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Abstract

Fast estimates for aggregate queries are useful in database
query optimization, approximate query answering and on-
line query processing. Hence, there has been a lot of fo-
cus on “selectivity estimation”, that is, computing summary
statistics on the underlying data and using that to answer ag-
gregate queries fast and to a reasonable approximation. We
present two sets of results for range aggregate queries, which
are amongst the most common queries.

First, we focus on a histogram as summary statistics and
present algorithms for constructing histograms that are prov-
ably optimal (or provably approximate) for range queries;
these algorithms take (pseudo-) polynomial time. These are
the first known optimality or approximation results for arbi-
trary range queries; previously known results were optimal
only for restricted range queries (such as equality queries,
hierarchical or prefix range queries).

Second, we focus on wavelet-based representations as sum-
mary statistics and present fast algorithms for picking wavelet
statistics that are provably optimal for range queries. No
previously-known wavelet-based methods have this property.

We perform an experimental study of the various summary
representations show the benefits of our algorithms over the
known methods.
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1 Introduction

Databases have traditionally relied on selectivity estimation
methods to generate fast estimates for (intermediate) result
sizes. This is typically used in cost-based query optimiza-
tion [13, 10, 8, 3, 4]. More recently, selectivity estimation is
used where an approximate answer to a query suffices; this
is appropriate where an approximation can be tolerated pro-
vided the query execution is rapid. Scenarios like that are
common in the exploratory data analysis which has become
a significant part of database processing with the growth in
data warehousing applications. Database engines are now
being designed to include approximate query processing; an
example is AQUA [1]. Finally, an emerging trend in database
research explores online query processing wherein fast esti-
mates are provided and they get refined over time at rates
controlled by the user [7]. Selectivity estimation is an inher-
ent part of such database systems.

Here we address a basic selectivity estimation problem. We
are given the attribute value distribution of a numerical at-
tribute, that is, for each attribute! value i, the number of
records of the database that has value 4 for the numerical
attribute under consideration. While the joint attribute val-
ues distribution of two or more numerical attributes is also
relevant, we focus only on the single attribute (i.e., the one
dimensional) case in this paper.? Selectivity estimation pro-
ceeds by storing some summary information about the at-
tribute value distribution which is used for providing esti-
mates for queries [1, 11].

We consider the range-sum or simply the range query where
the goal is to return the number of records in the database
with attribute values in a given attribute range. A special
case is when all ranges have coinciding endpoints, that is,
each query is an equality query.

In this paper, we study the foundational issues in estimating

'Throughout, we assume the attribute value is integral; this does not
affect the generality of our results since non-integral attribute can be aggre-
gated into ranges indexed by integral values without any difficulty.

2Straightforward extension of our results to higher dimensions are pos-
sible, but more extensive investigation will be needed.



range queries with limited space to store summary values.
Despite extensive research on selectivity estimation, there is
little understanding of how to provide the “best” range query
estimates for a given summary space bound. Our work is the
first to address algorithmic issues behind this problem and
prove guaranteed results. In particular, our technical contri-
butions are as follows:

1. [Histogram-Based Methods]

Histograms are commonly used for selectivity estima-
tion. The goal is to build a range-optimal histogram
which, informally, is a histogram that has the small-
est total error in estimating range queries, for a given
space bound for storing the histogram.

Our main result is a pseudo-polynomial time algorithm
that finds the range-optimal histogram. (The algorithm
takes pseudo-polynomial time means it is polynomial
in the database size and not in the number of attribute
values. More formal definition is in Section 2.) No
previous optimal results were known for this problem
save for rather special cases equality queries [6] or
hierarchically-limited range queries [9].

We add to our main result by presenting a faster al-
gorithm with a provable approximation guarantee that
gets arbitrarily close to the range-optimal histogram,
and polynomial time algorithms for alternate versions
of the histogram that are optimal for these versions.
Note that optimality of histogram depends on its repre-
sentation and changing representation (e.g., the num-
ber of values stored per bucket), changes the histogram
(e.g., how to estimate a range query from it) and its op-
timality for the given representation.

2. [Wavelet-Based Methods]

Wavelet techniques work by transforming the data into
a form that concentrates most of the information into a
small number of coefficients that can be easily summa-
rized. We present a fast (in fact, near-linear time) al-
gorithm to construct a provably optimal wavelet sum-
mary for range queries; no such algorithm was previ-
ously known.

3. [Experimental Results]

We perform an experimental study of the suggested
histogram-based algorithms, wavelet methods as well
as some heuristic variations thereof. Here we use the
pseudopolynomial time optimal histogram algorithm
as a benchmark to compare the performance of the
other algorithms.

We show not only that selectivity estimation methods
that do not optimize for range-queries perform signif-
icantly poorly compared to the ones that do, but also

that our heuristics that are no more expensive to com-
pute than the ones known in literature (for example,
those that optimize equality queries) perform very well
for range queries.

Map. We discuss the histogram definition and our algorith-
mic results for range-optimal histogram construction in Sec-
tion 2. We discuss the wavelet approach briefly in Section
3. Further heuristics and experimental results can be found
in Section 4. Concluding remarks in Section 5 discuss other
results and future directions. Due to space constraints, we
have only stated or sketched the results; proofs will be found
in the final version of this paper.

2 Histogram approach

In this Section, we consider histogram methods. That is,
we partition the indices 1,... ,n of a given array A into B
contiguous subsequences, (called buckets), store O(1) sum-
mary statistics for each bucket, and answer queries based on
the summary statistics. In each of the methods below, we
will optimize the selection of bucket boundaries and fix the
procedure used to answer queries (described further below).
Each such representation will result in possibly different “op-
timal” histogram for given datasets, and we will present al-
gorithms for computing such optimal histograms or approx-
imations thereof. In the experimental section, we will com-
pare the effectiveness of the different representations and our
algorithms.

A brief technical overview of our result follows. Histogram
construction algorithms mostly rely on dynamic program-
ming wherein an optimal result for a (sub)problem is ob-
tained by dividing it into two or more subproblems and com-
bining the optimal solutions to those subproblems. For this
strategy to work, the constituent subproblems should have
no interaction so that it suffices to consider their optimal so-
lutions independently. This framework applies for equality
queries and the resulting dynamic programming algorithm
is in [6]. This does not, however, work for range queries
where the ranges induce long range dependence between the
subproblems.? Our technical results in this category consist
of many observations that lets us precisely compute the long
range interaction within the solution of various subproblems,
or approximate this long range dependence, or show cer-
tain histogram representations wherein the long range depen-
dence can be made to disappear. These observations give us
the variety of algorithms we describe in this section.

3This dependence persists even if one thinks of a range query on the
original distribution as a collection of two equality queries on its prefix sums
distribution comprising the two endpoints of the range.



We first consider the OPT-A histogram, in which there is a
single summary statistic for each bucket, namely, the average
value of A[i]’s in that bucket. This is the classical histogram
considered in the literature.

In our histogram discussion, we will use the following nota-
tion. Define s[a, b] = >, ., <, A[i]; all ranges below include

both endpoints. We will denote by sa, b] the approximation
to s[a, b] given by whatever method is under consideration,
so the goal is to minimize the sum-squared error (summed
over all possible range queries)*

SSE = Z (s[a,b] — my .

a<b

For an index a = 1,... ,n, let B and B, denote the left-
most and rightmost elements in the bucket to which a be-
longs. We also write B~ and B;” for the left- and right-

most elements of the 7’th bucket,z = 1, ... , B; no confusion
should ensue. Let buck(a) denote the bucketindex 1,... , B
of the bucket containing @ = 1,... , n, and let avg(i) denote

the average of the ¢’th bucket.

2.1 OPT-A and Pseudopolynomial Time Algo-
rithms

The OPT-A approximation is given by equation 1 in the box.
The square brackets indicate rounding their argument to a
nearby integer in an arbitrary way. The argument to the
square brackets represents the outcome of breaking the query
(a, b) into three pieces—the piece contained in buck(a), the
piece contained in buck(b), and the piece that spans all buck-
ets (if any) strictly between buck(a) and buck(b). Note that,

> Al

BF<j<B?

(B — B + avg(i) =

the approximation

s[Bz +1,B; —1]

of the middle piece is exact—the error in s[a,b] is due to
the end pieces only. Similarly, given a query (a,b) with
buck(a) = buck(d), answer with

s[a,b] = [(b — a + 1)avg(buck(a))] .

4One may more generally consider workload distribution in which there
is a probability associated with each range query. We will address the prob-
lem of extending our solution to such general workload case in the final
version of this paper.

2.1.1 A Warm-up Exact Algorithm for OPT-A

We now give and analyze a pseudopolynomial time algo-
rithm for OPT-A. In the next Section, we will give a more
efficient algorithm that builds on the algorithm of this Sec-
tion.

Define 8,5 = s[a, b] — s[a, b]. Next, we will define
E(i,k,As, A)

for any given histogram solution with at most k£ buckets for

[1,4] such that 3, ; ;5> = A and Zlgiéfo = Ay. In

these cases, define E(i, k, A2, A) by > 1 cp.q 67.. Here

we stress that s[a, b], d4p, and E(i, k, A2, A) all depend on
a (partial) bucketing of the array A. The implied bucketing
will be clear from context.

For example, suppose n = 6, the array A is given by
(1,3,5,11,12,13),

i = 4, and k = 2. Consider the bucketing of the first i = 4
values into two equal buckets, (1,3) and (5,11). The aver-
ages of the buckets are 2 and 8. Then Zlg 5lB,> =(1+3)-

2:243-2+4(5+11)-2-8+11-8=4and 3, ;0% =
= I
(143-2-2)2+(3-2)2+(5+11—-2-8)?+(11-8)? = 10.
Thus E(4, 2,4, 10) is defined for this histogram and its value
is
E(4,2,4,10)
= (1-22+(1+3-2-2>+(1+34+5-2-2-8)°

+(14+345+11-2-2-2.8)°
+(3-2°4+B34+5-2-8 +(B3+5+11-2-2-8)
+(5-8)°+(5+11—-2-8)>
+(11 = 8)*

= 36.

Define E*(i, k, Aa, A) to be minimum value of
E(ia ka AQa A)

for any histogram that satisfies the conditions above. In order
to solve our problem, clearly it suffices to compute

E*(naBaAQaA)

for all possible values of A and A, and to take the minimum
possible. Our strategy is to compute the best bucketization of
size k by trying all possible values j for the right boundary of
the leftmost k — 1 buckets, and recursively solve the (k —1)-
bucket problem. We have

E*(i,k, Ao, A) = min
JiAs A2

J<i

A hi<i<s 0i=A
Ao+ p1cici Ofi=A2

E(j,k =1, A2, A)+



sla,0] =

(B — a+ 1)avg(buck(a)) +

>, (B

buck(a)<i<buck(b)

— BS + 1)avg(i)

+ (b — By + 1)avg(buck(b)) M

>

[,r1Cli+1,i]

St > O

1<i<j
JH1<r<i

Expanding the third term on the right, we have

> b

1<i<j<r<i

- >

1<i<j<r<i

(s[l,Bf]+---+s[j+1,r]

BT — =)

(6157 +0(j+1)r)”

P>

1<i<j<r<i

ZélzBf (Z

1<)

2( > 5<j+1>r) (Z%;)
JH1<r<i 1<j

Z 6?j+1)r(j)

JH1<r<i

= A(i—j) Z i (7) +2 Z Oj+1)r A
jH1<r<i J+1<r<i
Hence,
E*(i7k7A27A)
= i E*(j,k—1,X, A\
]17&171?2 (.]7 s N2, )
Jj<i

MY hi<i< 0i=A
A+ 1< 0=

+ Z&M (i—Aa+3j Z 6(J+1)r

[t,r]€[i+1,i] JH1<r<i
20 Y Gy

JH1<r<i

Theorem 1 There exists a pseudopolynomial time algorithm
for constructing the OPT-A histogram with optimal bucket
boundaries.

Proof. The algorithm involves computing E*(n, B, Ao, A),
for all possible values of A and A,, using the recurrence
above. Let A* be the largest value of |A| such that A needs to
be explored; we now bound A* from above. First, we show
that [§;p>| < s[1..n]. We have assumed that all values of A

are non-negative whence it follows that the average in each
bucket is non-negative, so (using crude bounds)

Sp> = Y (Ali] — avg(buck(l)))
I<i<B}
0521 < D (Ali] + ave(buck(l)))
< ;iflg,nn]
Thus
A| =

> dp
l

<D 0> | < nsl1, ).
l

Similarly, an upper bound, A3, for Ay is given by Ay <
> 075> < n(s[1,n])?. Furthermore, A and Ay are always
integrai. Hence, the number of different £* values we will
compute is
O(nB(ns[1,n])n(s[1,n]])*) = O(n’ B(s[1,n])*)

Each computation involves checking at most n choices for
J, and each such choice can be evaluated in O(1) time af-
ter a O(n) preprocessing. (This step is nontrivial, but uses
standard techniques as can be found in e.g., [9].) Hence, the
entire algorithm takes time O(n* Bs[1,n]?). This is polyno-
mial in s[1,n] and hence, the entire algorithm is pseudopoly-
nomial. We note that A* and A} are likely to be much less
than the upper bound above we have used to prove that the
algorithm works in time pseudopolynomial in the input size.
For example, one can show that each of |A*| and |A%] is at
most OPT, where OPT is the optimal error.

2.1.2 Improved Exact Algorithm

In this section, we present a faster pseudopolynomial time
algorithm for constructing OPT-A histograms.

We define F'(i, k, A) for any given histogram solution with
at most k buckets for [1,4] such that 3, 65> = A. The
quantity F'(i, k, A) is defined to be

Z 5” + Z5IB>

[t,r]C[1,1] 1<i

F(i,k,A)



Define F*(i, k, A) to be the minimum value of F'(i, k, A) for
any histogram that satisfies the conditions above. As in the
previous Section, we can try all possible values 5 + 1 for the
left endpoint of the rightmost bucket. That is,

—1,A)—Z§fBl>(n

FYi k,A) mln F*(j,k

1<j
)\+ZJ+1S1§1 dri=A =t
+D G (n Yoo+ > b
1<i [1,r]Cli+1,4] 1<I<j<r<i

We expand the last term:

Z Opy = Z 6(J+1)7’

+2 Z 6(j+].)’r’

1<I<j<r<i JH1<r<i JH1<r<i
+D G (n — i),
1<i
and get
F*(i,k,A) = min F*(j, k-1, )+
7 <1

At Djmci<i O = A

Y

[t,r1Cli+1,]

2 > S At Y. Gn(n—i).

JH1<r<i JH1<I<i

2
6lr + Z 6(]+1)r

JH1<r<i

Clearly, it suffices to compute F*(n, B, A) for all possible A
values in order to compute the range-optimal histogram. As
before, we bound A by A*, and, since A values are integral,
we need only consider A* values of A.

Theorem 2 There exists an O(n>BA*) time algorithm to
compute the OPT-A histogram with optimal bucket bound-
aries.

Note that A* = O(min{OPT,ns[1,n]}), where OPT is the
optimal error of the range-optimal histogram.

2.1.3 OPT-A-ROUNDED—A
Faster Approximate Method

In this Section, we consider maintaining intermediate results
only to a nearby multiple of an integer, x, to be determined

later. The result is that the runtime improves by a factor of
x (since we need only consider A values that are multiples
of ), while the histogram quality degrades by a bounded
amount.

Specifically, define the OPT-A-ROUNDED histograms (with
parameter z, to be optimized later) as follows:

Definition 3 Given an array A, round the entries (up or
down, arbitrarily) to nearby multiples of x. Divide the re-
sult through by x. Compute the OPT-A histograms on the
result, and multiply through by .

Theorem 4 Fix any ¢ > 0.

1. The histogram OPT-A-ROUNDED with parameter €
gives error within the factor (1 + €) of the error of
OPT-A.

2. Our algorithms for OPT-A and OPT-A-ROUNDED re-
quire the same storage, 2B values per bucket.

3. There is an algorithm for OPT-A-ROUNDED that re-
quires time O(n®B/e? 4+ n® Bv/A* /e).

The dominant expression in the runtime is v/ A*. This should
be compared with A* in the runtime of our best exact OPT-A
algorithm.

Some additional savings is possible by using unbiased ran-
domized rounding instead of arbitrary rounding. In particu-
lar, we can prove the theorem above with runtime

O(n*B/e + n*B\/A*[e).

2.2 Histogram Variants and Polynomial Time
Methods

In this section, we define variants of the classical histogram
where we store O(1) summary values for each bucket (re-
call that in the classical histogram, we just store the average
value per bucket). Informally, the main theme in this section
is that we choose appropriate summary value representations
for the buckets such that the cross-terms in the earlier sec-
tions (that is ones that depend on A and/or Ay) will vanish.
As a result, the algorithms are considerably faster (in fact,
they run in time polynomial in n and B) and produce opti-
mal histogram variants. Later, in the experimental section,
we compare how these histogram variants compare with the
classical ones discussed in the previous section. For now,



we focus on computing the histogram variants optimally and
efficiently.

The results of this Section follow from a main Lemma that
says, intuitively, that, for a natural answering procedure that
we specify below, the cross terms in the sum-squared error
vanish. We first describe one variant of this algorithm, SAPO,
then indicate a modest generalization to SAP1.

2.2.1 The SAPO Histogram

The SAPO and SAP1 methods are histogram approximations.
Given a histogram approximation H for range queries to an
array A, recall that s[l,r] denotes >, ., A[i], s[l,r] de-
notes the approximation to s[l,r], and d;,. denotes s[l,r] —
s[l,r]. Associated with each bucket i, in SAPO there are three
values: an suffix value suff(i), the average value avg(i),
and a prefix value pref(i). To answer an inter-bucket query
(a,b), return

sla, 0]
= suff(buck(a))

+ 2

buck(a)<i<buck(b)
+pref(buck(d)).

(Bi> — Bf + 1)avg(i)

Note that the response to an inter-bucket query depends only
on buck(a) and buck(b), but not otherwise on a and b. An
intra-bucket query (a, b) is answered by avg(buck(a))(b —
a + 1). Also note that, in contrast with OPT-A, the above
value is not necessarily an integer.

The answering procedure specifies that the stored average
value is the actual bucket average, but, a priori, the suffix
and prefix values can be any values.

Each of the optimal values has a closed-form expression—
they will be the averages of the bucket suffix sums and bucket
prefix sums, respectively. Furthermore, the special proper-
ties of the suffix and prefix averages make the final, cross
terms in

0t = 01> + 02 p< + 20,56,

vanish, leaving only error contributions computable from lo-
cal information. It follows that one can compute an SAPQ
histogram in polynomial time, using the dynamic program-
ming technique from [6] and from earlier in this Section.
We defer details until after presenting the following Lemma,
which is needed to show correctness and to motivate the al-
gorithm.

Lemma 5 (Decomposition Lemma)

1. For each r in the rightmost bucket of a partial buck-
eting, with prefix summary values equal to average
bucket prefix sums and suffix summary values equal
to average bucket suffix sums,

Z 6121" = Z 6l2Bl> +62Bfr'

I<BF I<BF

2. For this fixed query answering procedure and any par-
tition, the suffix values and prefix values that optimize
> L 87, are the averages of bucket suffix sums and
bucket prefix sums,

, 1 .
suff(buck(z)) = m Z S[j,B]>]
! ! BF<j<B7
and
1
pref(buck(i)) = —s——=—— Z s[B5, j]-

Proof: First, part 1. By definition
6227' = ((S[I7Bl>]+"'+S[Br<7T])

_ N2

- (s[l,Bf] +---+s[B§,r])) .

Note, however, that, for any interval [B;~, B:’], we have
S[Bi<’Bi>] = S[Bi<aBi>]’

since (B — B + 1)avg(i) = > op,ex(j)=i Ali]- Hence, for
eachl < BT,

2
0% = ((sl1. BY] + s[5 7)) — (51 B7 ] + 5B, 1) ) -
That is,

By our choice of approximation, suff (), of each bucket’s suf-
fix query, it follows that, for each bucket B < buck(r), we
have )7, 5lB,> = 0, whence, considering all [ in buckets
left of 7, we have 3, p< 65> = 0. This, with (2), gives
part 1 of the Lemma.

As for part 2, consider queries (I,r) with [ in the leftmost
bucket and r in an arbitrary other bucket. Note, that, for
this answering procedure, we could add a constant, ¢, to



each suffix approximation and subtract ¢ from each prefix
approximation. This yields an equivalent approximation in
the sense that it gives the same responses to queries; we con-
sider only equivalence classes of approximations. Thus, we
may assume, without loss of generality, that the optimal suf-
fix value in the leftmost bucket is the average of bucket suffix
sums. We need only show that the average of prefix sums is
the optimal prefix value.

But, for any random variable X, the expected value E[(X —
b)?] is minimized for b = E[X]. The optimality of prefix
values follows. Similarly, if the rightmost prefix value is the
bucket prefix average, then all the optimal suffix values are
bucket suffix averages. The Lemma follows. [ |

Intuitively, part 1 of the Lemma says that the total inter-
bucket error due to all range queries with right end point r is
the sum of two contributions, one that depends only on local
information between B and r and the other that depends
only on local information between [ and B;~ (independent of
r). In other words, the contribution of a bucket B to the total
error due to all inter-bucket ranges that have left endpoints
in B is independent of the buckets into which the ranges’
right endpoints fall. This greatly helps in finding the optimal
histogram as we will see next.

First, note that the Decomposition Lemma implies that if we
find the optimal bucket boundaries under the specified prefix
and suffix values and specified answering procedure, we will
in fact have the optimum over all bucket boundaries and all
prefix and suffix values.’ To see this (despite the apparent
circularity of the Decomposition Lemma), consider the opti-
mum histogram H over all bucket boundaries and summary
values. By part 2, the summary values are the average pre-
fix and suffix sums. Now, consider finding the histogram H’
with the best bucket boundaries for the answering procedure
that specifies using average prefix and suffix sums; H' can be
found quickly by dynamic programming, since, by part 1, the
cross-terms of the sum-squared error vanishes. By optimal-
ity of H' and H (over different sets of histograms), H = H'.

We now proceed to the top-level algorithm to construct his-
tograms. We use dynamic programming and just focus on
determining the error of the optimal histogram. Define the
quantity E(i, k) to be minimum error of a histogram of the
prefix A[1, ] using at most k buckets in which we consider
all range queries totally contained in [1, ¢] as well as the total
left contribution of these buckets to all the ranges whose left
endpoint is in [1, 7] and whose right endpoints is in [i + 1, 7).

SRecall that the fixed answering procedure specifies using the average
values for buckets in the interior of ranges. Although this results in zero
error contribution due to buckets in the interior of queries, using the bucket
averages are not necessarily optimum for lowering the overall sum-squared-
error.

We then have the simple recurrence in which to compute
E(i, k), we consider all possible choices of j < i that use
k—1 buckets for A[1, j] and have [j + 1, 7] as the k’th bucket.
The error contributed by the bucket [j + 1,4] can be deter-
mined in O(1) time as claimed earlier, and the rest follows
from dynamic programming:

Theorem 6 The SAPO histogram can be computed in time
O(n®B).

One can save space by recovering the bucket averages from
the bucket prefixes and suffixes. Thus bucket boundaries,
prefixes, and suffixes need to be stored, plausibly requiring
one computer word each. We then have:

Theorem 7 The SAPO histogram requires storage for 3B
numbers.

2.2.2 SAP1—Higher-Order Approximations

Recall that the SAPO algorithm of the previous Section kept
constants suff() and pref() and approximated s[l, B;] by
suff(buck(l)) and s[B;, r] by pref(buck(r)). The approxi-
mation is not sensitive to [ or 7 given buck(l) and buck(r).
More generally, we can also store other values, suff’(i) and
pref’ (i), and approximate s[/, B;"] by

(B; — 1+ 1)suft’(buck(l)) + suff (buck(l))
and approximate s[BS, r] by
(r — BS + 1)pref’(buck(r)) + pref(buck(r)).

We note without proof that the techniques of the previous
Section all work for this answering procedure. The opti-
mal values of suff’(i) and suff (i) are the coefficients of the
best vertical-offset sum-squared-error linear regression fit to
the set {(1, s[l, B;"]) : buck(l) = i}. As in the case of the
SAPO histogram, we can simultaneously optimize the bucket
boundaries and the pref, pref’, suff, and suff’ summary val-
ues. Also, as in the case of the SAPO algorithm, it is not
necessary to store the bucket averages, since these can be
recovered from the suff() and pref() values (which are the
same as in the SAPO algorithm).

Theorem 8 The range-optimal SAP1 histogram with opti-
mal bucket boundaries and summary statistics can be com-
puted in time O(n®B). The SAPI histogram requires storage
for 5B numbers.



Observe that, functionally, OPT-A stores the average values
per bucket, use them also for the suff’ and pref’ values, and
sets suff () and pref() to zero. Since SAPI optimizes the four
suffix and prefix values, it produces a B-bucket histogram
with error no worse (and, generally, better) than B-bucket
OPT-A histograms, while using 2.5 times as much space per
bucket. The SAPO B-bucket histograms are provably incom-
parable with the OPT-A B-bucket histograms, and the SAPO
B-bucket histograms use 50% more space. We compare var-
ious histograms experimentally in Section 4.

3 Wavelet-based Representations

Histograms are one common flexible method for calculating
summary statistics; wavelet-based techniques are another.
Several recent works (see [11, 17], for example) focus on
wavelet-based summary statistics for database query opti-
mization, approximate query answering, and dynamic main-
tenance of such statistics. This work uses only one orthonor-
mal basis (the Haar basis) and gives a variety of heuristic
estimation methods for point and range queries with respect
to this fixed basis. We will also use the Haar basis in this pa-
per. See [5] and the references therein for more information
on wavelets.

We show how to compute the wavelet coefficients that are
optimal for rangesum queries. Our overall approach is gen-
eral. For a given array A, we consider array AA where
AAli, j] is the sum of A[i] to A[j], that is, the rangesum.
Array AA is “virtual” in that we never materialize it. Now
we compute two dimensional point wise optimal wavelets
on AA. Standard two dimensional wavelet computation on a
two dimensional N x N array would take Q(N?) time, but
using the special structure in A A (it does not have O(N?) in-
dependent entries, but rather only O(N) ones), we are able
to show the following:

Theorem 9 There is an algorithm to compute the optimal
B-coefficient wavelet representation, for range queries in an
array of length N, that runs in time O(N (B log N)°1).

We have omitted several details involved in obtaining the re-
sult above due to space constraints. Although the overall ap-
proach we outlined above works for histogram based approx-
imations as well, the key here is that we are able to get a near
linear (in V) time algorithm for the wavelet representation
by using the special structure in them, which is significantly
faster than the ones we know for histogram representations.

4 Experiments and benchmarks

In this section we perform an experimental study of the vari-
ous histogram and wavelet representations discussed in pre-
vious Sections, as well as heuristics and local search im-
provements to them. We used a dataset containing 127 in-
teger keys created after doing random rounding, (up or down
with probability 1/2) of floats that are Zipf distributed [18]
with tail exponent v = 1.8.

Due to space constraints, we decided to focus only repre-
sentation “quality” results, that is, show the error in differ-
ent representations, not the runtimes. Although our wavelet
algorithms are quicker than methods for histograms, our pre-
liminary experiments with wavelet-based representations yield
results that are qualitatively worse than histogram-methods.
We include one wavelet-based experiment, denoted TOPBB
in Figure 1, but don’t discuss this further.

In Figure 1, we plot the sum-squared error (SSE) for all his-
togram and wavelet approximations that we tested. Notice
that y-axis is logarithmic. NAIVE is a simple summary rep-
resentation that uses the average value of all A[i]’s to answer
the queries. It is included only to provide a reasonable up-
per bound for SSE. The z-axis denotes the storage require-
ments of each representation, assuming bucket boundaries
and summary values each require a single computer word.

The AO histogram is a variation of the SAPO histogram, in
which only the average value avg(i) is stored in bucket 4, al-
lowing more buckets for a given target space. Query (a,b)
with buck(a) # buck(b) is answered using (1). We employ
the same dynamic programming set-up that we used for com-
puting SAPO, but the error, d,;, introduced for a range query
is given by (2). For this answering procedure the third, cross
term in (2) does not vanish, so the resulting histogram, con-
structed by a dynamic program that ignores the cross term,
is not optimal. Since this histogram is a variant of SAPO, in
which only the average value of the bucket is considered, we
refer to it as AQ.

Theorem 10 The A0 histogram requires storage for 2B num-
bers.

Based on the reported results we conclude the following for
the histogram techniques:

e Histograms that are optimized for point queries are in-
adequate for answering range-sum queries. We imple-
mented the V-Optimal histogram [6] optimized to an-
swer point queries on A[i] using an O(n?B) dynamic
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Figure 1: Measurements for Zipf distribution

programming algorithm. We adjusted the probabilities
for each point Afé] to reflect the probability that A[7]
is part of a random range-query. Performance of the
V-Optimal histogram is denoted as POINT-OPT in all
graphs. For our datasets the point optimal histogram
is up to 8 times worst than OPT-A with respect to SSE
and, on average, OPT-A is more than three times bet-
ter. POINT-OPT is inferior to all histograms for range
queries that we present in the graph.

o OPT-A requires pseudopolynomial time construction,
which will be infeasible for realistic datasets. SAPO
and SAP1 provide two polynomial time alternatives.
Construction of both histograms is faster because of
the decomposition lemma that allows strictly polyno-
mial running-time, but this comes at the expense of
using more values per bucket. The SAPO approxima-
tion is insensitive to the left or right query point in a
bucket and was inferior (in terms of SSE per unit stor-
age) to all other histograms that we tested.> SAP1 is
provably better than OPT-A for the same number of
buckets, however is requires 2.5 times more space. In
our tests OPT-A is 2-4 times better than SAP1, with re-
spect to SSE for a given space bound. This shows that
using more buckets is better that incorporating more
complex statistics within each bucket (and therefore
realizing fewer of them).

SFor readability we did not include measurements for SAPO in the Fig-
ure.

5 Conclusions

‘We have studied the selectivity estimation problem for range
queries, a fundamental problem. We have present the first-
known optimal and approximate algorithms with provable
guarantees for constructing histogram-based summary val-
ues; the algorithms take (pseudo) polynomial time. We have
also considered the wavelet-based approach for construct-
ing summary values and presented a near-linear time algo-
rithm for optimally choosing the summary values for range
queries. Again, no such results were known previously. We
have also presented experimental results with our algorithms
and other heuristics. Our work lays the foundation for under-
standing the true complexity of constructing “optimal” sum-
mary representations for range queries. Most results herein
are only sketched, full proofs will be in final version.

We describe one final idea, namely, a general approach to
improve the quality of histogram representations.

Once we have determined the bucket boundaries for any his-
togram, we can fix them and further optimize the approxima-
tion by changing the values stored in each bucket. For a fixed
bucketing scheme, we substitute avg(i) in formula 1 with a
value z(4) to be optimized. Let & = {z(1),...,2(B)} be
the set of values stored in the histogram. The overall sum-
squared error is

2
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a polynomial of degree 2 in the coordinates of Z. That is,

S o =2 +git +e, 3)
lr

where () is a B X B matrix depending on the bucket bound-
aries only, § is a vector of size B, and c is a constant. The
matrix @ and vector § can be found in time O(N + B?).
System (3) has a single local minimum, that can be found
by solving 2#Q + ¢ = 0 in the time it takes to invert a
B x B matrix, at most O(B?). The resulting approximation
is denoted as A-reopt for any original histogram algorithm
A. The reopt-ing operation takes time O(N + BM).

This reopt-ing strategy may help certain histogram optimiza-
tions where the summary values stored in buckets is not op-
timized in the definition of the histogram (such as the clas-
sical definition where we store just the average), but will not
help in other cases (e.g., in SAPO or SAP1, which already
optimize over summary values.) We did a preliminary ex-
periment with AO-reopt on our dataset and it was superior
and up to 41% better than OPT-A, with respect to the SSE.
However more extensive experiments have to be performed
(e.g., does OPT-A-reopt significantly outperform OPT-A?).
This result is encouraging because the methodology above is
general.
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